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Recap from last week
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The simplest data driven approach: a linear
classifier and a loss function

Learning process via optimization (and the
various processes behind it) 50t
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a Convolutional neural networks (CNN)

a Visualizing CNNs and examples

e Generative models: auto encoders

e Applications of CNNs: classifying clouds

e Ways of learning

o Cloud classification approaches: an overview
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Convolutional neural networks (CNN)




Neural network and images

How do neural network scale with images?
1 fully connected layer would have 10x2073 weights for the small image of 20/3
elements

Huge number of weights
to manage for the
network, only Iin the first
hidden layer, and
weights will add up
quickly If you add more
layers.

typical image sizes: 200 x 200 x 3 = 120000 elements.
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Downsides of ANN on field variables

MSG IR 10.8 um - 2022-06-47

50.5°N | = -
50°N giFrar Z rt
49.5°N

49°N [
¢ Stuttgard
48.5°N =N
48°N r Freiburg - .
BE SE 10°E L1=F 12°E

(DS

contextual and
spatial
relationships of
hearby pixels In
the data
ARE LOST

)
22
3

H E 454 B
Bed1oe OF COLOGNE
o*\y &



Convolutional neural networks

What changes In convolutional neural network compared to the regular ones?

CNNs do preserve the spatial structure, i.e. they assume that their input are images,
I.e. 3D objects

image
image size N: [32x32x3] kow7

32

by convolving the filter
with the image:

5 calculating the dot product
of the filter and the area of
the image under the filter
and then sliding the filter to
a new position
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Convolutional neural networks

These architectures are composed by stacking different types of layers in order:

e Convolutional layer
e Pooling layer

e Fully-connected layer

Convolutional layer

building block of CNN. It consists of

k-learnable filters (called “kernels”),
each of them with a width and a
height. The filters are convolved

across the height and the width of

the input 3D volume.

Pooling layer

downsamples the input volume it
receives, making the
representations smaller and more

manageable in terms of size.

Fully connected layer

derives the class scores of the

output categories

INPUT (raw
pixels)

Convolutional
layer

Pooling layer

Fully connected
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After sliding on all positions to cover
the image, we obtain one value for
each position that will compose
the activation map

Convolution for each of the k filters

activation map: [28 x 28 x 1]

Image size N: [32x32x3]

28

32 Convolve (slide) over all spatial

locations of the image

28

The result iIs one number P that Is the dot product
between the filter and a small chunk of the image.
Calling x = {x1....xD} the portion of input image covered by
the filter array and f={f1...fD} the filter, the number P is:

P = xT*f1+x2*f2+x3*f3+... +xD*fD

if k = 6 and we have 6 filters of size 5x5,
we get 6 activation maps separate

We can stack them up to
get a new image of size
28 x 28 x 6




Seeing on the 2d plane of the image

Image

Activation map

Filter \ .

e =\

/8 20

HTAN UNIVERSITY
H

\*‘_'f OF COLOGNE

DS

CHS



Seeing on the 2d plane of the image

Image

Filter \

Activation map
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Seeing on the 2d plane of the image

Image

Activation map

Filter \

PR UNIVERSITY
"Ny, OF COLOGNE
2




Pooling layer

Pooling works in the same way
as CNN but instead of taking the
dot product of the elements of
the filter with the area covered
of the image, it selects the
maximum.

activation maps

max pooling with 2x2
filters

Other forms of pooling are also
' possible instead of max, for

example, one can take the
average. For some applications,

like recognition, higher values
are preferred to be transferred,
SO max pooling is better in such
> cases

It is applied on each map

The pooling layer downsamples the input volume it receives and operates
on each activation map independently so that the downsampling is applied
uniformly to all of them.




Nomenclature of CNNs and Pooling layers

FILTER SIZE
it is the spatial dimension of the
sliding window over the input. This is
a crucial parameter in image

classification tasks: large kernel sizes
extract less information and lead to a
faster reduction of the dimensions in
the layer, but they are better suited

to extract features that are larger.

Small filter sizes can extract larger

amount of information containing

highly local features from the input.

@@_@ﬂFor more on CNN and animations explaining all the concepts presented here, check the following link

STRIDE
it is the number that
iIndicates of how many
pixels the kernel should be

shifted over at a time.

PADDING
It is hecessary If the filter size
extends beyond the activation
map. Most common approach
IS zero-padding because it
Mmaintains the same size of the
Input. Applying a padding of 1
means to add 1 pixels on each

border of the input image
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https://poloclub.github.io/cnn-explainer/?utm_source=substack&utm_medium=email
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Visualizing CNN and examples




CNN examples

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) evaluates algorithms for object detection and image classification at large scale.

Why?

The evolution of the winning entries on
the ImageNet Large

Scale Visual Recognition Challenge
from 2010 to 2015. Displayed is the
error in the classifications. Since 2012,
CNNs have outperformed hand-
crafted descriptors and shallow
networks by a large margin. Image re-
printed with permission from K. He, X.
Zhang, S. Ren, and J. Sun, “Deep residual
learning for image

recognition,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), Jun 2016, pp. 770-778. (K.
Nguyen, C. Fookes, A. Ross and S.
Sridharan, “Iris Recognition With Off-the-
Shelf CNN Features: A Deep Learning
Perspective,” in IEEE Access, vol. 6, pp.
18848-18855, 2018, doi:
10.1109/ACCESS.2017.2784352._
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2 e t0 compare progress in detection across a wider variety of objects
e to measure the progress of computer vision for large scale image indexing for retrieval and annotation.
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227

AlexNet

AlexNet solves the problem of image
classification with subset of ImageNet
dataset with roughly 1.2 million training
iImages and 1000 classes:

CONV Owverlapping Overlapping
stride=4, 96 3x3, 5x5,pad=2 3x3, 3x3,pad=1
96 kernels stride=2 256 kernels stride= 384 kernels
RIS E— —_ S
| 27+2*2-5)1 27-3V2 +1 13+2°1-3)1
11i (227-11)/4 +1 (55-3)/2 +1 11 = a7 ] {z 13 J {+1 13 )
: L =55 =27 13

e 50,000 validation images,

e 150,000 testing images.
The output is a vector of 1000
numbers.

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad O 13
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer

[27x27x256] CONVZ2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOLZ2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOLS3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

1000

13
Softmax

13 12

Overlapping O O

CONV CONV Max POOL
3x3,pad=1 3x3,pad=1 258 3x3, 256 O
384 kernels 256 kernels stride=2
{(13+2°1-3)1 {13+2%1-3)i1 (13-3)/2 +1 FC ) FC ) :
+1 =13 +1 =13 =6 - -

: s ol 0] 1©

4096

4096

e |nput: 227x227x3 images. If the input image
IS hot 256256, image Is rescaled such that
shorter size is of length 256, and cropped
out the central 256*256 patch from the
resulting image.




CNN examples

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) evaluates algorithms for object detection and image classification at large scale.

Why?

The evolution of the winning entries on
the ImageNet Large

Scale Visual Recognition Challenge
from 2010 to 2015. Displayed is the
error in the classifications. Since 2012,
CNNs have outperformed hand-
crafted descriptors and shallow
networks by a large margin. Image re-
printed with permission from K. He, X.
Zhang, S. Ren, and J. Sun, “Deep residual
learning for image

recognition,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), Jun 2016, pp. 770-778. (K.
Nguyen, C. Fookes, A. Ross and S.
Sridharan, “Iris Recognition With Off-the-
Shelf CNN Features: A Deep Learning
Perspective,” in IEEE Access, vol. 6, pp.
18848-18855, 2018, doi:
10.1109/ACCESS.2017.2784352._

/ \ Revolution in depth: ResNet

[ 152 layers I

L\ZZ layers ‘ [ 19 layers

\ ResNet )‘-nnglewet

\ 6.7 7.3
3 ' I
ILSVRC'15 LSVRC'14  ILSVRC'14
VGG

2 e t0 compare progress in detection across a wider variety of objects
e to measure the progress of computer vision for large scale image indexing for retrieval and annotation.
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FLOPs). From the paper He et al.,
2015
ResNet
. j N
Residual network are a type of neural hetworks that - 'ﬂ"'.l'l'uu v )
substantially simplify the training of deeper networks. - |I & e, M- layer
e . = M- layer
What happens when we continue stacking layers? & A 6-layer e
5 o L
_ = 2{-layer
Two main problems: | S o _
1) Vanishing and exploding gradients will increase ner{led) ter, { led)
2) It appears the so-called degradation problem, i.e. Figure 2.10: Training (left) and test error (right) on CIFAR1O with 20 and 2ith 56 layer
de eper n etworks perform worse both in trainin g an d plain networks. The deeper the network, the higher the test and training error.
] o o From the paper He et al, 2015
In test error, but this is not caused by overfitting but to
the fact that a deeper network has tons of parameters H(x) F(x)+x
to learn T +
Solution:

HSE

Instead of just trying to learn H(x), we try to learn what to add or subtract to
X, which is F(x). Since the output after the layer should be the same, it holds that

H(x) = F(x) + X

The layers will be used to fit the residual function: F(x) = H(x) - X
instead of H(x) directly.

A residual network with 34

i 34 idual
parameter layers (3.6 billion nELSsious

image

conv

conv

X

normal plain layer

conv

conv

X

residual layer —
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http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

Full ResNet architecture:
e Stack residual blocks
e Every residual block has two 3x3 conv layers
e Periodically, double # of filters and downsample spatially
using stride 2 (/2 in each dimension)
e Additional conv layer at the beginning
e No FC layers at the end (only FC 1000 to output classes)

Experimental Results

- Able to train very deep networks without degrading

(152 layers on ImageNet, 1202 on Cifar)

- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all LSVRC and COCO 2015 competitions

ILSVRC 2015 classification winner (3.6% top 5 error) -- better
than “human performance”! (Russakovsky 2014)

34-layer residual

image

.‘r- - -
[ “‘”F";;'“- 2| & begins with 7x7 convolutional layer

[ o

e 3x3 conv, 64 filters

IAdoarm, 1215

g3 core, 128 {

=P i —

Caamang |

[ m3eoewsz | .
it

& Global average pooling layer after last conv layer
== & No FC layers besides FC 1000 to output classes

Ix1 256
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Visualizing convolutional neural networks

Why visualizing?

because people think CNN are not interpretable
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we will focus on the t-SNE representation methods often used with CNN for representing large datasets.




t-SNE. What is t-SNE, first of all?

t-SNE (t-distributed Stochastic Neighbor Embedding) is a method for nonlinear dimensionality reduction developed in 2008 by Geoffrey
Hinton and Laurens Van der Maaten

it is used to understand high-dimensional data by projecting_them on a 2 or 3 dimensional space.

How does the algorithm work?

Z;

hypothesis: we have a 3 different classes .

1)_STEP 1: build a probability distribution representing_similarities between Q

neighbours of classes. .
what is a similarity? the conditional probability that the data point xi would pick

Xj as its neighbor.

As a first step, we want to create a probability distribution that can
represent similarities between neighbors of these classes.

Euclidean distances of all other points from xi, are
proportional to the Gaussian probability density
centered around position xi of the given selected point.

\ Representation of the construction of a Gaussian probability distribution function
of the distances between the points of a given multidimensional dataset, inspired
. . - from the article of Kemal Erdem on Medium on t-SNE representations.
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https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a

To get better proportions we can normalize the probability density by the sum of all the projections, therefore the conditional probability that the data
point xi would pick xj as its neighbor can be written as:

Increasing sigma gets the

d.atnd It dgptends otr;]the |'_2t P E.‘l}p( — | |:‘,.5"z — :;cj | |2 /2(}'3) Gaussian shape to become

istance between the points, e — broad tributing to bett

as well as on a quantity sigma 2i% E exr (— | |3_': —_T ‘ ‘2/20-2) _ro_a er., COntiby mg o berer
' k#i 4 1 k i distinguish probabilities of

neighboring points in the talil.

ok, but what is sigma?

The value for sigma is connected to a quantity called perplexity. Perplexity can be interpreted as a guess about the number of neighbors for the
central point of the cluster, and it tells something about how to balance the attention between local and global aspects of the dataset.

PE?"p(Pi) —3'3 Z Pi|;10g2P;): The higher the perplexity, the
higher is the variance of the
where  — Z pi;logap;.  is the Shannon entropy. distances of the points.

ok but how are sigma and the perplexity connected?

Sigma Is connected to the perplexity because
SNE performs a binary search for the sigma value
that can reproduce a probability distribution with a fixed perplexity chosen from the user.

CaTalg
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STEP 2: build low dimensional probability distribution.

create a low dimensional space with the same number of points
as the original space, spread randomly on the new space. We
want to find similar probability distributions of the Pj|i, but in this low
dimensional space.

we use a t-student distribution for describing the distances
among the points in this nhew low-dimensional space, because
the tail of the t-distribution is more steep, and has a long tail,
reducing the problem of squashing all points into a single point.

If we call yi the positions, we can write it as:

gl
> kt(L+ [lye — wil[?) 1

qij

— X"
e EXP(—x2/(2 % 2))

1.8

i

Comparison of gaussian and t-student distribution, from
https.//medium.com/towards-data-science/t-sne-clearly-explained-
d84c537f53a
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STEP 3: Minimization of the cost function to make qilj similar to
Pilj
goal: make the probability distribution of the points qij in the low-

dimensional space as similar as possible to the distribution Pilj. K L (P‘ | Q) — E E Pij log =

The cost function that does this job is the Kullback-Leiber (KL) i j qi.?
divergence: KL divergence is a measure of how much two
distributions are different from each other.

--> minimizing KL divergence calculated for Pilj.and gij will make gjj
as similar as possible to Pi|j and provide the optimal reduction of
dimensions

O
>
%
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STEP 3: Minimization of the cost function to make qilj similar to

Pil;

goal: make the probability distribution of the points qij in the low- p e

dimensional space as similar as possible to the distribution Pilj. KL (P‘ | Q) S E P : lﬂg ﬂ
— i

The cost function that does this job is the Kullback-Leiber (KL) 1 j' q?‘.?

divergence: KL divergence is a measure of how much two
distributions are different from each other.
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tSNE limitations
from Wattenberg, et al., "How to Use t-SNE Effectively”, Distill, 2016. http://doi.org/10.23915/distill

“Although extremely useful for visualizing high-dimensional data, t-SNE plots can sometimes be mysterious or misleading.”

e On perplexity values: When perplexity ranges in the values suggested by the authors between 5 and 50, diagrams show clusters with different
shapes, but for different values we can get unexpected behaviors. There’s no fixed value that gives reasonable results and different datasets
might require different number of iterations to converge. Also, running multiple times with the same set of hyperparameters does not always
give the same diagrams.

Figure from “How to Use
t-SNE Effectively”. by

Wattenberg, Viegas and . . Outside that range
Johnson, Al " . . ® : . NN 2.5 _
https://distill pub/2016/mi "-'ﬁ_' ; ‘, "',_ ? & B AR T for perplexity 5-50,
sread-tsne/#citation e Ve e { - ﬁ : .2 : o ':" things g.et a little
reproduced under - L. . & weird.

Creative Commons _ v ".:;_,‘ 1 )
Attribution CC-BY 2.0
D‘riginﬂi Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000
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tSNE limitations
from Wattenberg, et al., "How to Use t-SNE Effectively”, Distill, 2016. http://doi.org/10.23915/distill

“Although extremely useful for visualizing high-dimensional data, t-SNE plots can sometimes be mysterious or misleading.”

e On perplexity values: When perplexity ranges in the values suggested by the authors between 5 and 50, diagrams show clusters with different
shapes, but for different values we can get unexpected behaviors. There’s no fixed value that gives reasonable results and different datasets
might require different number of iterations to converge. Also, running multiple times with the same set of hyperparameters does not always
give the same diagrams.

Figure from “How to Use
t-SNE Effectively”. by
Wattenberg, Viegas and
Johnson,

Outside that range

‘;‘ » 1k "8 : . . _
https://distill pub/2016/mi _.'-'.'!-.-_'f_‘ ’ * 8 Team for perplexity 5-50,
ot g Wi v &% 3 things get a little
sread-tsne/#citation g " { Ams . 33 ¥ .
reproduced under - - L. . - weird.
Creative Commons S N ) _
Attribution CC-BY 2.0 The first four were
Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100 stopped before
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 stability. After 10, 20,
How much does the 60, and 120 steps you
number of iterations B W can see layouts with
affect the results? seeming 1-dimensional
iterate until you get a f;,_%‘l. a,ﬁ-'.‘ - andeven pointiike
g If you see a t-SNE plot

Original

HSE

Perplexity: 30
Step: 10

Perplexity: 30
Step: 20

Perplexity: 30
Step: 60

Perplexity: 30
Step: 120

Perplexity: 30
Step: 1,000

with strange “pinched”
shapes, chances are
the process was
stopped too early.
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B ISEE OF COLOGNE
7



500 points
drawn from
a unit
Gaussian
distribution
in 100
dimensions
projected
onto the first
two
coordinates.

¢ On random noise: when representing with t-SNE a cloud of points generated randomly, depending on the perplexity t-SNE reproduces clusters,

which aren’t meaningful. These clusters are just random noise of the-SNE plots. You see patterns in what is really just random data.

Original

“ge § Me
-
Bt g
-
]
Perplexity: 2
Step: 5,000

perplexity 2: evident clusters

ey
-l LT Sl

S #

= 'l"‘ h:-_'#-ﬂ

AR o
Perplexity: & Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000

e On shapes: sometimes, shapes appear depending on the perplexity

r="":

i

T

L1
i B
¥ -
i-l‘
LY
=
Perplexity: 2
Step: 5000

2 %

1 L t,
‘i-u I ad s ﬁ:q,
,‘ ,i Mt g et N N .
g T ‘l |
- - f
Perplexity: & Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5000 Step: 5,000 Step: 5,000 Step: 5,000

Even in the best cases, though, there’s a subtle distortion: the lines are slightly curved outwards in the t-SNE diagram.

Figure from
“How to Use
t-SNE
Effectively’.
by
Wattenberg,
Viegas and
Johnson,
https://distill.p
ub/2016/misr
ead-
tsne/#citation
reproduced
under
Creative
Commons
Attribution
CC-BY 2.0

t-SNE tends to
expand
denser regions
of data. Since
the middles of
the clusters
have less
empty space
around them
than the ends,
the algorithm
magnifies
them.
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Putting it all together: one example




Supervised approach
applied to EuroSAT

e benchmark dataset for land
cover
and land use classification
e 27 000 images (64x64 pixel),
labelled & georeferenced,
manually checked

. 1

- An. crop

Ty

ot

v _,.,'.:ﬁ!*

e Sentinel-2 satellite operated
by ESA

e RGB from Multispectral
Imager

e Spatial resolution ~ 10m

e Areas over cities covered by
European Urban Atlas !

[@ole-ountries, all year



EuroSAT classes

Residential Industrial HerbaceousVegetation

AnnualCrop PermanentCrop




Subset of images used (12000 for simplicity)

Residential . HerbaceousVegetation

AnnualCrop : i ' Sealake

X e
&

PITIR
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Architecture

........... Residential ]

ResNet>0 2048 x 1 4x1

| / \
__________ Annual Crop | /‘\ ."'}"'. \

Classification

i | true labels

\ \‘! | . A as most
N | probable
i ] IR B
3| |2 & 1SS [SIEIR] |S
3 E:_ - A [Pyl 7y T T,
— = ‘.-..E-)-E EEm h-“.:-'- Elpl ‘ ""
TR FEELE = :
= - . Compareto |

¥

\ ,Bottleneck” layer / . _ y R
' |
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1.0

0.8 4+— i

Training

0.6 -

0.4 1

80% train, 20% test (hormalized)

0.2 T

D-U T T ] ] T T
0 20 40 60 80 100

Hyperparameters chosen: o
e Optimizer: stochastic gradient descent
e Scheduler: ReducelLROnPlateau ol |
e | 0ss: cross-entropy

Train for 100 epochs

80 -+

cy [%]

70 1

Accura

60 1+

—— training accuracy

50




TeS t P: HerbaceousVegetation

Residential

Annual Crop |

| Vegetation l

Sealake

true label

Arcuracy (5]

T: AnnualCrop

Test accuracy = 93.3 %

I HerbaceousVegtation

«
&
'
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& & \,
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&
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Generative models: auto-encoders



Generative models

Type of machine learning model that aims to learn the underlying patterns or distributions of data to generate new, similar data.
Given a training dataset, it can generate hew samples of the same data distribution.

Training data with a given distribution P_data(x) Samples generated form a distribution P_model(x)
The generative model learns the distribution P_model(x) so that it is as similar as possible to P_data(x)

These models can do very different things:
e define and solve for P_model(x)
e learn a model that can sample from P_model(x) without explicitly defining P_model
e create artworks
e create generative models of time series of data that can be used for simulations and planning



Autoencoders

Autoencoders are an unsupervised approach for learning_a low dimensional feature representation from unlabeled training_data.
Autoencoders can reconstruct data, and can learn features to initialize a supervised model




Autoencoders

Autoencoders are an unsupervised approach for learning a low dimensional feature representation from unlabeled training data.

Autoencoders can reconstruct data, and can learn features to initialize a supervised model

Imagine that we have some input data x, and we want to learn from x
some features that we will call z. Usually, z has a lower dimension than x
(dimensionality reduction)

z should consist of features that can capture meaningful factors of
variations in the data (good features) and this is why they are less than
X

INPUT DATA

The encoder is a
function that
maps from the
input data x into
the features z.

FEATURES

ENCODER




Autoencoders

Autoencoders are an unsupervised approach for learning a low dimensional feature representation from unlabeled training data.
Autoencoders can reconstruct data, and can learn features to initialize a supervised model

Imagine that we have some input data x, and we want to learn from x
some features that we will call z. Usually, z has a lower dimension than x
(dimensionality reduction)

INPUT DATA X

The encoder is a

function that
maps from the EN COD Eﬂ
input data x into
the features z. \L/

z should consist of features that can capture meaningful factors of
variations in the data (good features) and this is why they are less than FEATURES
X

€ hecoder architecture

Typically the encoder architecture has changed with time:
first --> linear systems with the addition of the sigmoid

Tra‘m‘mg

The training should be such that the features we obtain
can be used to reconstruct the original data. This is the
reason for the name “auto-encoding”, that means
encoding themselves.

nonlinearity,
then --> deep fully connected architecture
finally --> a relu activation with a CNN

Stanford course on convolutional neural network for computer vision (https://tinyurl.com/courselinkccomputervision)



The decoder part The decoder is a second network that receives the features that were produced based on the
iInput and outputs something that has the same dimensionality of X, so something similar to x.

e i . N
PR L&lNE
RSN
-H\]/‘( .ﬁ INPUT DATA X*

encoder: 4-layer conv

decoder: 4-layer conv E N COD Eﬂ

Hai&!l
BN ans wres QD
n!sgn For the decoder, we are using the same

type of network architectures used in the D‘ECO DE'Q

bl < S
(https.//tinyurl.com/courselinkccomputervision) e n C Od e I’S, | . e . C N N fO r m OSt Of th e t | m e v

Source: Examples from lecture series cs231_n from Stanford University,

RECONSTRUCTED
INPUT DATA X



Training

We then train such features in such a way to be used to reconstruct the original data. No external labels
are used to train this network. Instead, we use a loss function which is similar to a L2 loss distance, that

acts at pixel scale, trying to make the pixels of the reconstructed image to be the same as the ones of the
Input data.

INPUT DATA X*

ENCODER

\g

After training, we can throw away the decoder.
It was used to produce our reconstruction and DEC
provided the input to compute the loss function

RECONSTRUCTED
INPUT DATA

This loss function does not use labels — I ‘ ‘2

2 LOSS FUNCTION




Training We then train such features in such a way to be used to reconstruct the original data. No external labels
are used to train this network. Instead, we use a loss function which is similar to a L2 loss distance, that
acts at pixel scale, trying to make the pixels of the reconstructed image to be the same as the ones of the

Input data.
INPUT DATA
The encoder can be used to produce a feature mapping with which
we can initialize a supervised model.
We can also connect the features to an additional classifier network
on top of the encoder, to provide a class label for a classification
problem.
FEATURES

Value: use a lot of untrained data to learn good

general feature representations. It can be used

also to Initialize a supervised learning problem

when we don’'t have enough labelled data.

ENCODER

X*

\g
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Application of CNNs: Cloud classification






Is cloud mesoscale organization relevant?
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Surface wind speed [m/s]

Different cloud mesoscale patterns have different properties and radiative
responses, which matter for climate
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Bony, S., Schulz, H., Vial, J., & Stevens, B. (2020). Sugar, gravel, fish and flowers: Dependence of mesoscale patterns of
trade-wind clouds on environmental conditions. Geophysical Research Letters, 47, e2019GL0O85988.



and numerical models should represent such processes and their interactions

¢ V(
ks = C
o' rg £ \°
o] C
Ce 20 o
| | | | | | | N
cloud turbulence ‘ cumulus Cumulonimbus Mesoscale convective Extratropical cyclones Planetary waves
microphysics clouds clouds systems
mm 10m 100m 1 km 10 km 100 km 1000 km 10000 km

Cloud resolving models

Numerical weather prediction models (NWP)

NextGEMS climate models

Are they good in that?

98



Models resolving convection do not reproduce the same aggregation
we see in the observations at the mesoscale

GPM IMERG, 01.12.2020, 00:30 UTC ICON, 01.12.2020, 00:30 UTC

Figure: Becker, T.,
Takasuka, D., and Bao, J.:
. . Characteristics of
i - W SR e 3 precipitating convection and
GC—_:%F% , ST SR ] : moisture-convection
T L SR relationships in global km-
: Vi, o : o scale simulations, EGU
r 2 General Assembly 2024,
Vienna, Austria, 14-19 Apr
2024, EGU24-17683,
https://doi.org/10.5194/egus
phere-equ24-17683, 2024.,

-
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paper in preparation “*"On
the influence of moisture-
convection relationships on
precipitating convection in
global km-scale simulations”
from Takasuka, Bao and
Becker
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from Becker et al,, in prep,



Does mesoscale convective aggregation matter?
is crucial in the dynamics of tropical convection.

contributes to the formation of large-—Scale weather

SijemS like mesoScale convective comr:lexeS

i§ crucial for accurate forecasting in NW/ and climate models

it influences the mean state of the atmosphere by affecting the

distribution of convective heating.




What forms of organization do we have in nature?
Can we reproduce them?



What forms of organization do we have in nature?
Can we reproduce them?

hot really, so we have a difficulty in representing these clouds in climate models.



The Earth is warming...

Increase
Relative to above 1850-

1991-2020 60-month average temperature (°C) over reference }283
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Global average near-surface temperature for centred running 60-month periods, relative to the average for the 1991-2020 reference period (left-hand axis) and as an increase
above the 1850-1900 level (right-hand axis), according_to six datasets. The average temperature for 1991-2020 from ERAS5 is 14.4°C. Data sources: ERA5 (C3S/ECMWEF), JRA-55
(JMA), GISTEMPv4 (NASA), HadCRUT5 (Met Office Hadley Centre), NOAAGIlobalTempv5 (NOAA) and Berkeley Earth. Credit: C3S/ECMWE. From
https://climate.copernicus.eu/climate-indicators/temperature

Since 1850—=1900, an increase in
surface air temperature of around
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...and climate models struggle to predict how clouds will respond to climate change.

Differing predictions, between different climate models, for how
these clouds will respond to a warming climate account for most
of the variation in climate sensitivity between models (Bony &

Dufresne, 2005; Medeiros
et al,, 2008; Vial et al., 2013; Webb et al., 2006)

Assessed Cloud Feedback Values

High-Cloud Altitude
Tropical Marine Low-Cloud
Tropical Anvil Cloud Area | f———t——
Land Cloud Amount -

Middle Latitude Marine Low Cloud Amount

Tt @Lp

High Latitude Low-Cloud Optical Depth 1-

o o e . el ] e s R . e i

Total Cloud Feedback 1

[]
-04 -02 00 02 04 06 0.8
Wim =2 =1
Assessed values of individual cloud feedbacks and the total cloud feedback based upon process evidence. For
individual cloud feedbacks, maximum likelihood values are shown by black diamonds and the widths of blue
rectangles, with 2 times the 1-sigma likelihood values shown by the width of the black uncertainty bars. For
the total cloud feedback, the mean value of the PDF is shown by a black diamond and the width of the
accompanying blue rectangle, with 2 times the PDF standard deviation shown by the width of the black uncertainty
bar. From Sherwood, S. C., Webb, M. J,, Annan, J. D,, Armour, K. C., Forster, P. M., Hargreaves, J. C, et al. (2020). An
assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58,
e2019RGO00678. https://doi.org/10.1029/2019RGO00678
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From Dufresne, J., and S. Bony, 2008: An Assessment of the Primary Sources of Spread of Global Warming Estimates
from Coupled Atmosphere—Ocean Models. J. Climate, 21, 5135—-5144, https.//doi.org/10.1175/2008 JCLI2239.1.



https://doi.org/10.1175/2008JCLI2239.1
https://doi.org/10.1029/2019RG000678

Satellite instruments have observed clouds for several decades
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. i -We_ have-a rich dataset that
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~ our understanding of
~cloud dynamics and
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Cloud classification effectively reduces the dimensionality of information
in satellite images, rendering them tractable to analysis.
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Ways of learning



Supervised learning

Data (x,y)

Goal

Learn a function that can map x into y

y 1S label

Golden
retriever

Examples

ClaSSi{»icafioh Vb Secf detection

e &N

— CAT

L.

Image Segmentahon

r = ‘*
- E‘! i .
Ilfl'"._" A ..- ®
ol i

kj, by T -
R RN "
s e

i

e~ PG o D D L T

A dog is playing with
a ball on the floor

Source: Examples from lecture series cs231_n from Stanford University _(https://www.youtube.com/redirect?
event=video_description&redir_token=QUFFLUhgbXhQMVMwcXQ3bGgwdEI9FdVBQemJVNzRIbOIUQXxBQ3JtcOttbjAtWEtHUF 9KUXhs YjM4SDNRQIhBeFMINGIVMKE3YjhzQVN
SVIFXQIRQZkOWNOdraONuWVRMSOpVdzJxS2FlemtxL SOObOxDenpzREJER2do TnNOdKIJYjI5V3hVSWFUQVAOUWOo2NWJIhc TZLVmVZTQ&q=http%3A%2F %2Fcs231n.stanford
.edu%2Fslides %2F2017 %2Fcs231n_2017_lecture13.pdf&v=5Wolt GTWV54)


https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbXhQMVMwcXQ3bGgwdE9FdVBQemJVNzRlb0lUQXxBQ3Jtc0ttbjAtWEtHUF9KUXhsYjM4SDNRQlhBeFM1NG1vMkE3YjhzQVNsV1FXQlRQZk9WN0dra0NuWVRMS0pVdzJxS2FIemtxLS00b0xDenpzREJER2doTnN0dklJYjl5V3hVSWFuQVA0UWo2NWJhcTZLVmVZTQ&q=http%3A%2F%2Fcs231n.stanford.edu%2Fslides%2F2017%2Fcs231n_2017_lecture13.pdf&v=5WoItGTWV54

Unsupervised learning

Examples
Data

Only data, no labels
Cl"St"‘”“S PCA and dimehSionalitj

reduction

xS

data

Loss
(distance x* x)

Feature learhihg
Goal

Learn underlying hidden structures in the data Input

reconstructed

e\
iInput data reconstructed data

input data




Self-supervised learning

In a self-supervised approach we don’t have labels, but we ask
the model to learn that the augmentation combinations created .

o _ _ _ C Vor F g g
from our data are “similar”, since they are different “versions”

of the same image

Learning principle Contrastive learning: learn general features of
a dataset without labels by teaching which data points are similar

or different in a comparison among pairs

In this process, the unsupervised problem is transformed into a

supervised problem by auto-generating the labels. (pseudolabels

from the data itself) fl'l" F ihg

To make use of the huge quantity of unlabeled data, it is crucial to
set the right learning objectives to get supervision from the data

itself.




Self-supervised methods designh a learning task that does not rely on human annotations.

1) from one image, you take two different crops

2 twins from each

crop, having 75% of NETWORK

2) you build two representations @ the crop area (96 x _ e
of those crops and you try to %0 S
match them @ @ | |

3) there are many ways to operate the matching: contrastive learning, matching representations, cluster assignment

All in all, it is about learning invariance with respect to data augmentation and cropping.

Inspired from the tutorial on computer vision self-supervised approaches, contribution from Mathilde Caron (https://www.youtube.com/watch?v=MdD4UMshl1Q&t=13629s)



Summarizing

training
Supervised learning

i = it is a golden
. M olden retriever Yetlfie (g
training neural networks on labeled data for a @g i :
~ U‘
SpeCifIC taSk. (éifi}g golden retriever 4{&5\
. N\ ®
4 ;ﬁ golden retriever

Unsupervised learning

find implicit patterns in the data without being
explicitly trained on labeled data. Unlike
supervised learning, it does not require annotations
and a feedback loop for training. For e.g. clustering.

Self-supervised learning

predict any unobserved or hidden part (or
property) of the input from any observed
or unhidden part of the input. It is also
known as predictive or pretext learning.




G

Cloud classification approaches:
an overview



Overview of cloud classification algorithms




Overview of cloud classification algorithms




Human identified cloud patterns: first step
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Differences in patterns are associated with differences in the
structure of the cloud field as also visualised by its radar
presentation, with Fish being most associated with deeper
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clouds and precipitation.

Twelve trained atmospheric scientists gathered to explore to what extent patterns of
mesoscale variability could be visually and subjectively identified in satellite imagery of

1.4 modes of organization: sugar, flower, fish and gravel.

2. The majority (4 of 6) of the labellers agreed on one of these four
labels with a probability (p = .4) much larger than would be
expected by randomly assigning six (p = .052).

3.Almost all of the images (more than 90%) exhibited features
sufficient for at least one person to say that a particular pattern
dominated the image.

2007
2008
2000
2010
2011

2012
2013
2014
2015
2016

Sugar [ Gravel

Fish

B Flower

. Fish

Stevens et al., 2019, Rasp et al.,, 2020



Human and machine identified cloud patterns: Rasp et al., 2019

WHAT THEY DO: | B
On cloud labeling days at two institutes, 67 scientists They applied 2 pattern recognition tasks:

screened 10,000 satellite images on a crowd-sourcing 1) object detection (drawing boxes around images)
platform and classifed almost 50,000 mesoscale 2) image segmentation (classification of every pixel of the image)
cloud clusters.

This dataset is then used as a training dataset
(labeled) for deep learning algorithms that automate
the pattern detection and create global climatologies

of the four patterns.

CAT DOG CAT GRASS SKY

Figure 2: World map shewing e dhiee regions selecled for the Soonteerse progect. Hor charls e shounng wlach
Ffraction of the fmage ares was classified inta one of the four regions by the human [ahelers. Note that the areas do not
edd up o one. The remeining freciion wos nol elossifien,
Rasp et al., 2019



Human and machine identified cloud patterns

Segmentation
Total '--11:1_.E.i||_'..5_.: :"-J-:'_I'I_al:gﬁl: 1 usergs .

WHAT THEY DO:

On cloud labeling days at two institutes, 67 scientists
screened 10,000 satellite images on a crowd-sourcing
platform and classifed almost 50,000 mesoscale
cloud clusters.

This dataset is then used as a training dataset
(labeled) for deep learning algorithms that automate
the pattern detection and create global climatologies

of the four patterns.

Figure 6: Human and machine learning predictions for four images from the validation set. Note that images a) and
b) are also shown in Fig. 3.

Figure 2: World map shewing the dhiee regions selecled for the Seonteerse progect. Hor charls are shounng wlhich
froctior of the fmage erea was classifed mita one of the four rapions by the human lobelers. Node that the oreas do nof

edd wp o one. The remaining froction sos noel clossdjiod,

Rasp et al., 2019



Quantifying the agreement between classifications (Humans vs Machine)

b Mean loU per User
0.30
N Humans
0.25- . SE‘{]TI"IEH’[Eﬁﬂr‘_I Intersect over Union (loU) score, also called the
BN Object detection Jaccard index.
0.20

- Given two sets, A and B it is defined as the ratio of
o 0,15 their intersection to their union,
L.e., | = A\B divided by U= A UB.

0.10

0.05 loU = 1: perfect overlap
loU = 0: no overlap

0.00

The primary reason for the low
mean loU score are zero values,
which arise from some users
detecting a feature while others

i not Both algorithms show a large agreement with the human labels for a

random validation dataset. The fact that the scores are higher than the
mean inter-human loU directly reflects the fact that the algorithms tend to
produce less noisy predictions.



Limitations of human labeled approach
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Limitations of human labeled approach

) Table 2. Number of Time Windows That Contain Robustly Identified Patterns in the Boreal
Human label classes occur in Winters of 2017/2018 (JFM), 2018/2019 (NDJFM), and 2019/2020 (NDJFM)

less than 50% of the cases

pattern # of 6 h windows % of total % of robust patterns
(Schulz et al., 2021) |
Sugar 145
Subjective approach can really Gravel 305
capture a complete Flowers 77
representation of the cloud Fish
organization? Or will it privilege Others
somehow what our eyes are mixed

able to recognize? no pattern

Table from Schulz, H., Eastman, R, & Stevens, B. (2021). Characterization and evolution of organized shallow convection in the
downstream North Atlantic trades. Journal of Geophysical Research: Atmospheres, 126, e2021JD034575. Schulz et al., 2021:



https://doi.org/10.1029/2021JD034575
https://doi.org/10.1029/2021JD034575

Overview of cloud classification algorithms




Unsupervised methods (1)

Denby, 2019: first unsupervised neural network
model which autonomously discovers cloud
organization regimes in satellite images.

The tiles of the triplet are sampled from
satellite imagery: 1

i -,,I-:._ 1—1_..-4'

e two contain very similar cloud
structures (same image, 50% overlap)

¢ the third contains very different cloud
structure compared to the former two
(random location, different day)

Input images: 256 x 256 RGB anchor tile
composites using the channels 1, 2, and
3 of GOES.
Tiles size: 200 km (capturing any cloud
structure up to beta mesoscale.
Dataset: reighbgur Eile
e Four satellite images per day,
e domain Tropical Atlantic,
e 3 months of data period nov 2018
to Jan 2019 (Boreal winter)

distant tile
itrom ditferant day) |

GOAL: construct a computational model
that can discover which structures exist
In a given image and group images
containing similar structures without
any label.

li\ The loss function encourages similar
embeddings from the anchor and the

tife triplet

architecture: residual network,

multiple lavesrs of corwalutiong
and non:linEar actrvatans

LI

ResNet-34

B ~

10 embedding
wactor

neighbor and penalizes similar
embedding from the anchor and the
distant tile. It is based on L2 norm

y = Fnn(x) = MN(.../3(72(/1(x)))). distances.

L{Em Ips Ed} = m“lFﬂn“ﬂ} - Frr.ra“ﬂ]'”E - ”Fm':“u} - Frr.ri“d” |2f U:I' +m,

~ i m is the hyperparameter called margin,
x

11, regulating the distance between anchor

1% and distant tile. m set to 1.

meural network

Ax
embedding
vectors



Neural network without supervision
discovers different types of cloud
structures and groups images with
similar features together in the
embedding space.

embedding space
1

cluster similarity in

Figure 2. Demonstration of clustering for embeddings produced by the trained neural network. Top: dendrogram showing hierarchical structure of the
clustering, with height representing intra-cluster variance in embedding distance in a cluster resulting from a specific merge of two child clusters. Only the
clusters present before the last 12 merges are showed for brevity. Bottom: 12 random tile examples from each cluster belonging to the leaf immediately above in
the dendrogram. Each leaf node cluster is annotated with the number of tiles in that cluster and a label to aid discussion. The persistence in the dendrogram
indicates for example clusters A and B are much more similar to each other than to any other cluster. A number of visibly distinct structures have been
identified, for example, scattered small clouds (A, B) cellular structures (C, D, G, and H in order of scale) and larger cloud cellular {(D-F) and broken (I-L) cloud

structures.



iy This is a dendrogram, and displays the
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Figure 2. Demonstration of clustering for embeddings produced by the trained neural network. Top: dendrogram showing hierarchical structure of the
clustering, with height representing intra-cluster variance in embedding distance in a cluster resulting from a specific merge of two child clusters. Only the
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indicates for example clusters A and B are much more similar to each other than to any other cluster. A number of visibly distinct structures have been
identified, for example, scattered small clouds (A, B) cellular structures (C, D, G, and H in order of scale) and larger cloud cellular {(D-F) and broken (I-L) cloud

structures.

Neural network without supervision
discovers different types of cloud
structures and groups images with
similar features together in the
embedding space.
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scattered.
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Cloud impact on the Earth's radiation budget: different clusters have different cloud radiative properties in outgoing short-wave and long-
wave radiation

16

tile nearest to
the mean
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long wave
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chanmel 9
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mean radiative properties (and so
climatic impact) are clearly

with increasing cloud cover i distinct.
there is in general a decreasing
amount of long-wave emissions 5

to space and an increase of

short-wave emissions.
i
short wave
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channel 1
AR L1b Radiances mean [W m=2 sr=l um=1]
Figure 3. Per-tile mean radiance of channels 1 (in short-wave range) and 2 (in long-wave range) for all 1000 tiles in
study set together with the per-cluster mean and error (standard error of the mean) across all tiles in each cluster
produced by hierarchical clustering (figure 2) colored by cluster. Each cluster is annotated with the nearest tile. The
clusters show a clear separation between different cloud structures, more cloudy tiles having less long-wave and more
short-wave emission is radiated into space, and each cluster has distinct radiative properties.

Denby, 2019



lorg - DMB space

The clusters of cloud types
identified by the neural network
occupy different parts of the lorg
- DMB space, and the cluster
means are clearly separated,
the neural network has learnt
distinct cloud regimes.

lorg quantifies whether

the spatial distribution of clouds is regular
(lorg < 0.5), random (lorg = 0.5), or
organized (lorg>0.5),

2.2 1
2.0 1
1.8 1
.E -I'r
= 1A
cluster
e 147 g &
DMB quantifies the 2
spatial form of clouds by C
. . . e D
measuring the fractal dimension, o
expected to be between that of a 1.2 - : E
line (DMB = 1) and a plane (DMB = s H
2), by counting the number of : ]'
successively smaller boxes that s L
cover the cloud mask. =k 0.5 0.6 0.9
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Figure 4. Cloud organization {Iﬂm] and fractal dimension (D) for all 1,000 tiles in study set produced by hierarchical
clustering (figure 2), colored by cluster, together with per-cluster mean and standard error in the mean. Each cluster is

annotated with nearest tile.

Denby, 2019



Unsupervised methods (2)

Kiruhana et al., 2022: learning cloud features directly from radiances produced by MODIS

Architecture

Deep convolutional
autoencoder, that in
learning optimizes the
function L

min L(x) = min ||z — F(z)||,

mage j\ /Q map to

rep resentation

Encoder

The loss combines four
metrics: L1, L2, Sobel filter
and multiscale similarity
index (MSSIM)

Decoder
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In encoder, width and stride
halved at each block, depth
doubled.

In decoder, tranformations
reversed.
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Kiruhana et al., 2022: learning cloud features directly from radiances produced by MODIS

Architecture
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function L

min L(x) = min ||z — F(z)||,

mage j\ /Q map to
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and multiscale similarity
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Model framework

MO2 and M35
are the MODO2 and
MODG35 satellite data

products used as
iInputs
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Model framework

MO2 and M35
are the MODO2 and

MOD35 satellite data

products used as
iInputs

..which are then fed
into the clustering to
obtain the cloud
classification.
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MO2 and M35
are the MODO2 and

MOD35 satellite data

products used as
iInputs

..which are then fed
into the clustering to
obtain the cloud
classification.

Training
1Ak | Tminmeodel | pEcpapcH
| Total 780G | 0N GPU COMPUTING
' ; CENTER The encoder decoder
el - identifies the
e i dimensionality
= o reduced features...
5,400 files . _ :
Totel T5806 Trained model
Moz
e
- meeee=—"""[Fnatches 8 .8,128)|
Clustering . .. e TS
: ;:-____
22Ul files  pPreproces - | Train Clustering |
{1-80KB . fiie) MOz an CPU
Tota! BEOME e
(#patches, 128) ([¥patches,128]
[#cloud patch index]}
They use hierarchical distance between cluster A and B is
agglomerative clustering (HAC) nANE 1Ca — CB“E the squared distance between

to merge data points by
Mminimizing cluster variance

ddist(X a, XB) =
nA

+np

centroids of the merged clusters CA
and CB weighted by the sum of the
number of patches in A and B.



Results
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Side thoughts on crop image sizes, channels and domain sizes

SUPERVISED

Stevens, 2019: around 1000x2000 km, visible images from

MODerate-resolution Imaging Spectroradiometer (MODIS) Only avound 50% of the images are classitied,
Rasp, 2019: Terra and Agqua MODIS visible images from NASA what do we do with the rest?

Worldview subregions a larger image (larger than Stevens)

UNSUPERVISED

Kiruhana, 2022: 128 x 128 km, 6 selected bands radiances and
MODIS products

Denby, 2019: 256 x 256 pixels corresponding to 200 km size,
RGB composite with visible channels multi-frequency radiances ?

S‘mgle or mulhple ‘mputs?

\/isible channels or
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Overview of cloud classification algorithms




We leave the tropics and we move to Europe
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Through the upper
branch, the network assighs a pseudolabel gs corresponding
to a centroid Cs to the feature vector Z obtained from the image xit2.

Convolutional Neural  Multi-layer  Spherical K-means

Network (CNN) Perceptron
Random \/
c
crop (75%)
Hit! v K
Parent
satefite
image
(128x128)
XLR‘ Random Cosine
crop (75%) similarity tc
Xiny Centroids



Random
crop (75%)
I"'l

Convolutional Neural  Multi-layer  Spherical K-means
Network (CNN) Perceptron

Cross Entropy
Loss

Cosine
similarity tc
Centroids

In the lower branch we also obtain a feature array z, which is compared to the
one from the other branch by inserting it in the cost function together with the
output (Cs, gs) of the upper branch




Convolutional Neural  Multi-layer  Spherical K-means
Network (CNN) Perceptron

Random
crop (75%)
Hi'l.'l
Parent
image Loss
(128x128)
X, .
—s Random Cosine
crop (75%) similarity
s Centroids

When the feature vectors of the two branches capture similar information about the
original image, the loss becomes lower and higher when they diverge. That is how the
network branches are encouraged to focus on the image characteristics, which
progressively makes the feature vectors similar.



Training and classification

closest 1st closest 2nd farthest 1st farthest 2nd

The seven centroids in show Centroid
distinct COD patterns

Centroid
2 Is associated mainly with
clear-sky conditions

Centroid 3:
optically thin clouds

Centroids with
extended cloud fields with
mean cloud fraction higher

than 94%

Cloud optical dept

FI1G. 4. Each row shows five 128 X 128 COD images belonging to a certain cloud regime (CR) over central Europe for (left) centroid,
(left center) closest first, (center) closest second, (right center) second farthest, and (right) farthest; the color scale is shown for COD refer-

€NCe PUrposes.



Optimum classification

distinct cloud patterns occupy distant areas

class 2 relates to clear-
sky conditions and is
located

clearly on the edge of E 1
the 2D space t .
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on the opposite edge we
find the classes
with the strongest
convective cloudiness




Classes 4, 5, and 6 (blue-shaded dots in Fig. 7) all describe
overcast situations with cloud fractions of more than 94%.

Physical properties of clouds For these classes, average COD values are larger than 10, and
Classes 3 and 7 correspond to they span a broad region of CTP values above 800 hPa
relatively low-level clouds
© . . 1
- (orangeshaded) with relatively small 4 200 -
00| :‘? cloud optical depth values, with their k|
Mmean values displaying 4
100 cloud-top altitude below 600 hPa  * 3 300
o (around 3000 m). : f;
-
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Surface downwelling solar radiation (W/m~2) Cloud Optical Depth

F1G. 7. (a) Mean TOA TRS vs mean SDS given by dots of 1000 randomly selected images of the 128 X 128 configuration, with color in-
dicating the class to which they belong. Triangles indicate the mean position of the classes. The images associated with the triangles are
the closest to the mean position of the 1000 images. The crosses in the triangles represent the error bars of each cluster group for the radia-
tive properties on x and y. (b) Asin (a), but in the 2D space given by COD (abscissa) and CTP (ordinate).
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We can study the temporal
development of specific
cloud regimes and exploit the 5-
min temporal resolution of
the dataset to observe the
transformation of cloud systems
with time at a higher resolution.

sometimes a mixed regime appears with the

alteration between

two deep convections (classes 5 and 6)

When deep convection decreases, then low
level cloud and then clear sky appear.
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In the morning you can also see the
deepening of the atmospheric boundary
layer, with lower clouds substituted by
i 4 deeper convective clouds.
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that’s it
for this
course!




