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Neural network and images

How do neural network scale with images?
 1 fully connected layer would have 10x2073 weights for the small image of 2073

elements

typical image sizes: 200 x 200 x 3 = 120000 elements.

Huge number of weights
to manage for the

network, only in the first
hidden layer, and

weights will add up
quickly if you add more

layers. 
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Convolutional neural networks

What changes in convolutional neural network compared to the regular ones?

CNNs do preserve the spatial structure, i.e. they assume that their input are images,
i.e. 3D objects

image

filter

how?

by convolving the filter
with the image:

calculating the dot product
of the filter and the area of
the image under the filter

and then sliding the filter to
a new position

filter k size D: [5x5x3]

image size N: [32x32x3]
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INPUT (raw
pixels)

Convolutional neural networks

These architectures are composed by stacking different types of layers in order:

Convolutional layer

Pooling layer

Fully-connected layer

Convolutional layer
building block of CNN. It consists of

k-learnable filters (called “kernels”),

each of them with a width and a

height. The filters are convolved

across the height and the width of

the input 3D volume. 

Pooling layer

downsamples the input volume it

receives, making the

representations smaller and more

manageable in terms of size.

Fully connected layer

derives the class scores of the

output categories

Convolutional
layer

RELU

Pooling layer

Fully connected
layer
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filter k size D: [5x5x3]

image size N: [32x32x3]

The result is one number P that is the dot product
between the filter and a small chunk of the image. 

Calling x = {x1.....xD} the portion of input image covered by
the filter array and f={f1...fD} the filter, the number P is:

P = x1*f1+x2*f2+x3*f3+... +xD*fD

activation map: [28 x 28 x 1]

1
28

28

Convolve (slide) over all spatial
locations of the image

if k = 6 and we have 6 filters of size 5x5,
we get 6 activation maps separate

We can stack them up to
get a new image of size 

28 x 28 x 6

P

Convolution for each of the k filters After sliding on all positions to cover
the image, we obtain one value for

each position that will compose
the activation map



Seeing on the 2d plane of the image

Activation map

Image

Filter



Seeing on the 2d plane of the image

Activation map

Image

Filter



Seeing on the 2d plane of the image

Activation map

Image

Filter



Pooling layer

1 3 2 1
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activation maps 

It is applied on each map

max pooling with 2x2
filters

Pooling works in the same way
as CNN but instead of taking the
dot product of the elements of
the filter with the area covered

of the image, it selects the
maximum.

Other forms of pooling are also
possible instead of max, for
example, one can take the

average. For some applications,
like recognition, higher values

are preferred to be transferred,
so max pooling is better in such

cases

The pooling layer downsamples the input volume it receives and operates
on each activation map independently so that the downsampling is applied

uniformly to all of them.



Nomenclature of CNNs and Pooling layers

PADDING

it is necessary if the filter size

extends beyond the activation

map. Most common approach

is zero-padding because it

maintains the same size of the

input. Applying a padding of 1

means to add 1 pixels on each

border of the input image

STRIDE

 it is the number that

indicates of how many

pixels the kernel should be

shifted over at a time.FILTER SIZE

it is the spatial dimension of the

sliding window over the input. This is

a crucial parameter in image

classification tasks: large kernel sizes

extract less information and lead to a

faster reduction of the dimensions in

the layer, but they are better suited

to extract features that are larger.

Small filter sizes can extract larger

amount of information containing

highly local features from the input.

For more on CNN and animations explaining all the concepts presented here, check the following link

1

2

https://poloclub.github.io/cnn-explainer/?utm_source=substack&utm_medium=email


Visualizing CNN and examples
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CNN examples
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) evaluates algorithms for object detection and image classification at large scale.

Why? to compare progress in detection across a wider variety of objects 
to measure the progress of computer vision for large scale image indexing for retrieval and annotation. 

The evolution of the winning entries on
the ImageNet Large
Scale Visual Recognition Challenge
from 2010 to 2015. Displayed is the
error in the classifications. Since 2012,
CNNs have outperformed hand-
crafted descriptors and shallow
networks by a large margin. Image re-
printed with permission from K. He, X.
Zhang, S. Ren, and J. Sun, “Deep residual
learning for image
recognition,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), Jun 2016, pp. 770–778. (K.
Nguyen, C. Fookes, A. Ross and S.
Sridharan, "Iris Recognition With Off-the-
Shelf CNN Features: A Deep Learning
Perspective," in IEEE Access, vol. 6, pp.
18848-18855, 2018, doi:
10.1109/ACCESS.2017.2784352._



AlexNet 

Input: 227x227x3 images. If the input image
is not 256*256, image is rescaled such that
shorter size is of length 256, and cropped
out the central 256*256 patch from the
resulting image.

AlexNet solves the problem of image
classification with subset of ImageNet
dataset with roughly 1.2 million training
images and 1000 classes:

 50,000 validation images, 
150,000 testing images. 

The output is a vector of 1000
numbers.

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)



CNN examples
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) evaluates algorithms for object detection and image classification at large scale.

Why? to compare progress in detection across a wider variety of objects 
to measure the progress of computer vision for large scale image indexing for retrieval and annotation. 

Revolution in depth: ResNet

The evolution of the winning entries on
the ImageNet Large
Scale Visual Recognition Challenge
from 2010 to 2015. Displayed is the
error in the classifications. Since 2012,
CNNs have outperformed hand-
crafted descriptors and shallow
networks by a large margin. Image re-
printed with permission from K. He, X.
Zhang, S. Ren, and J. Sun, “Deep residual
learning for image
recognition,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), Jun 2016, pp. 770–778. (K.
Nguyen, C. Fookes, A. Ross and S.
Sridharan, "Iris Recognition With Off-the-
Shelf CNN Features: A Deep Learning
Perspective," in IEEE Access, vol. 6, pp.
18848-18855, 2018, doi:
10.1109/ACCESS.2017.2784352._



ResNet 
Residual network are a type of neural networks that

substantially simplify the training of deeper networks. 

What happens when we continue stacking layers?

Figure 2.10: Training (left) and test error (right) on CIFAR10 with 20 and 2ith 56 layer
plain networks. The deeper the network, the higher the test and training error.
From the paper He et al., 2015

 Two main problems:
1) Vanishing and exploding gradients will increase
2) It appears the so-called degradation problem, i.e.
deeper networks perform worse both in training and
in test error, but this is not caused by overfitting but to
the fact that a deeper network has tons of parameters
to learn

A residual network with 34
parameter layers (3.6 billion
FLOPs). From the paper He et al.,
2015

conv

conv

conv

conv

H(x)

normal plain layer

F(x)+x

residual layer

x x

+

H(x) = F(x) + x

The layers will be used to fit the residual function: F(x) = H(x) - x
instead of H(x) directly.

Solution: 
Instead of just trying to learn H(x), we try to learn what to add or subtract to
x, which is F(x). Since the output after the layer should be the same, it holds that

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


Full ResNet architecture:
Stack residual blocks
Every residual block has two 3x3 conv layers
Periodically, double # of filters and downsample spatially
using stride 2 (/2 in each dimension)
Additional conv layer at the beginning
No FC layers at the end (only FC 1000 to output classes)

begins with 7x7 convolutional layer 

Global average pooling layer after last conv layer

No FC layers besides FC 1000 to output classes

3x3 conv, 128 filters, /2 spatially with stride 2

3x3 conv, 64 filters

Experimental Results
- Able to train very deep networks without degrading
(152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

ILSVRC 2015 classification winner (3.6% top 5 error) -- better
than “human performance”! (Russakovsky 2014)



Visualizing convolutional neural networks 

because people think CNN are not interpretable

Why visualizing? 

we will focus on the t-SNE representation methods often used with CNN for representing large datasets.



 t-SNE (t-distributed Stochastic Neighbor Embedding) is a method for nonlinear dimensionality reduction developed in 2008 by Geoffrey
Hinton and Laurens Van der Maaten

 it is used to understand high-dimensional data by projecting them on a 2 or 3 dimensional space.

t-SNE. What is t-SNE, first of all?

How does the algorithm work?  

1) STEP 1: build a probability distribution representing similarities between
neighbours of classes. 
what is a similarity? the conditional probability that the data point xi would pick
xj as its neighbor.

As a first step, we want to create a probability distribution that can
represent similarities between neighbors of these classes. 

Representation of the construction of a Gaussian probability distribution function
of the distances between the points of a given multidimensional dataset, inspired
from the article of Kemal Erdem on Medium on t-SNE representations.

hypothesis: we have a 3 different classes 

https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a


To get better proportions we can normalize the probability density by the sum of all the projections, therefore the conditional probability that the data
point xi would pick xj as its neighbor can be written as:

The value for sigma is connected to a quantity called perplexity. Perplexity can be interpreted as a guess about the number of neighbors for the
central point of the cluster, and it tells something about how to balance the attention between local and global aspects of the dataset. 

                                                                                  where                                    is the Shannon entropy.

Increasing sigma gets the
Gaussian shape to become
broader, contributing to better
distinguish probabilities of
neighboring points in the tail.

and it depends on the L2
distance between the points,

as well as on a quantity sigma. 

The higher the perplexity, the
higher is the variance of the

distances of the points.

ok, but what is sigma?

Sigma is connected to the perplexity because 
SNE performs a binary search for the sigma value 

that can reproduce a probability distribution with a fixed perplexity chosen from the user. 

ok but how are sigma and the perplexity connected?



STEP 2: build low dimensional probability distribution. 
create a low dimensional space with the same number of points
as the original space, spread randomly on the new space. We
want to find similar probability distributions of the Pj|i, but in this low
dimensional space. 

we use a t-student distribution for describing the distances
among the points in this new low-dimensional space, because
the tail of the t-distribution is more steep, and has a long tail,
reducing the problem of squashing all points into a single point.

 If we call yi the positions, we can write it as:

Comparison of gaussian and t-student distribution, from
https://medium.com/towards-data-science/t-sne-clearly-explained-
d84c537f53a



STEP 3: Minimization of the cost function to make qi|j similar to
Pi|j
goal: make the probability distribution of the points qij in the low-
dimensional space as similar as possible to the distribution Pi|j.

The cost function that does this job is the Kullback-Leiber (KL)
divergence: KL divergence is a measure of how much two
distributions are different from each other. 

--> minimizing KL divergence calculated for Pi|j and qij will make qij
as similar as possible to Pi|j and provide the optimal reduction of
dimensions



STEP 3: Minimization of the cost function to make qi|j similar to
Pi|j
goal: make the probability distribution of the points qij in the low-
dimensional space as similar as possible to the distribution Pi|j.

The cost function that does this job is the Kullback-Leiber (KL)
divergence: KL divergence is a measure of how much two
distributions are different from each other. 

--> minimizing KL divergence calculated for Pi|j and qij will make qij
as similar as possible to Pi|j and provide the optimal reduction of
dimensions

By feeding the feature array coming out of the fully
connected layer as input for Pi|j, we can build a 2d
distribution qij that looks like this:

Example of t-SNE representation of an input of satellite cloud optical thickness images (EXPATS research group).



tSNE limitations

Figure from “How to Use
t-SNE Effectively”. by

Wattenberg, Viegas and
Johnson,

https://distill.pub/2016/mi
sread-tsne/#citation
reproduced under
Creative Commons

Attribution CC-BY 2.0

from Wattenberg, et al., "How to Use t-SNE Effectively", Distill, 2016. http://doi.org/10.23915/distill

“Although extremely useful for visualizing high-dimensional data, t-SNE plots can sometimes be mysterious or misleading.”

On perplexity values: When perplexity ranges in the values suggested by the authors between 5 and 50, diagrams show clusters with different
shapes, but for different values we can get unexpected behaviors. There’s no fixed value that gives reasonable results and different datasets
might require different number of iterations to converge. Also, running multiple times with the same set of hyperparameters does not always
give the same diagrams.

Outside that range
for perplexity 5-50,

things get a little
weird.



tSNE limitations

Figure from “How to Use
t-SNE Effectively”. by

Wattenberg, Viegas and
Johnson,

https://distill.pub/2016/mi
sread-tsne/#citation
reproduced under
Creative Commons

Attribution CC-BY 2.0

from Wattenberg, et al., "How to Use t-SNE Effectively", Distill, 2016. http://doi.org/10.23915/distill

“Although extremely useful for visualizing high-dimensional data, t-SNE plots can sometimes be mysterious or misleading.”

On perplexity values: When perplexity ranges in the values suggested by the authors between 5 and 50, diagrams show clusters with different
shapes, but for different values we can get unexpected behaviors. There’s no fixed value that gives reasonable results and different datasets
might require different number of iterations to converge. Also, running multiple times with the same set of hyperparameters does not always
give the same diagrams.

Outside that range
for perplexity 5-50,

things get a little
weird.

How much does the
number of iterations
affect the results?

iterate until you get a
stable configuration

The first four were
stopped before

stability. After 10, 20,
60, and 120 steps you
can see layouts with

seeming 1-dimensional
and even pointlike

images of the clusters.
If you see a t-SNE plot
with strange “pinched”
shapes, chances are

the process was
stopped too early. 



On random noise: when representing with t-SNE a cloud of points generated randomly, depending on the perplexity t-SNE reproduces clusters,
which aren’t meaningful. These clusters are just random noise of the-SNE plots. You see patterns in what is really just random data.

perplexity 2: evident clusters

500 points
drawn from

a unit
Gaussian

distribution
in 100

dimensions
projected

onto the first
two

coordinates.

On shapes: sometimes, shapes appear depending on the perplexity

Even in the best cases, though, there’s a subtle distortion: the lines are slightly curved outwards in the t-SNE diagram. 

t-SNE tends to
expand

denser regions
of data. Since
the middles of

the clusters
have less

empty space
around them
than the ends,
the algorithm

magnifies
them.

Figure from
“How to Use

t-SNE
Effectively”.

by
Wattenberg,
Viegas and
Johnson,

https://distill.p
ub/2016/misr

ead-
tsne/#citation
reproduced

under
Creative

Commons
Attribution
CC-BY 2.0



Putting it all together: one example



Supervised approach
applied to EuroSAT

benchmark dataset for land
cover 

 and land use classification
27 000 images (64x64 pixel),

labelled & georeferenced,
manually checked

Sentinel-2 satellite operated
by ESA
RGB from Multispectral
Imager
Spatial resolution ~ 10m
Areas over cities covered by
European Urban Atlas
34 countries, all year



EuroSAT classes



Subset of images used  (12000 for simplicity)



Architecture



Training

80% train, 20% test (normalized)

Hyperparameters chosen:
Optimizer: stochastic gradient descent
Scheduler: ReduceLROnPlateau
Loss: cross-entropy

Train for 100 epochs



Test accuracy = 93.3 %

Test



Generative models: auto-encoders
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Generative models

Type of machine learning model that aims to learn the underlying patterns or distributions of data to generate new, similar data.
Given a training dataset, it can generate new samples of the same data distribution.

Training data with a given distribution P_data(x) Samples generated form a distribution P_model(x)

The generative model learns the distribution P_model(x) so that it is as similar as possible to P_data(x)

These models can do very different things: 
define and solve for P_model(x)
learn a model that can sample from P_model(x) without explicitly defining P_model
create artworks
create generative models of time series of data that can be used for simulations and planning
...



Autoencoders

Autoencoders are an unsupervised approach for learning a low dimensional feature representation from unlabeled training data.
Autoencoders can reconstruct data, and can learn features to initialize a supervised model



X

Z

Autoencoders

Imagine that we have some input data x, and we want to learn from x
some features that we will call z. Usually, z has a lower dimension than x
(dimensionality reduction)

INPUT DATA

FEATURES
z should consist of features that can capture meaningful factors of
variations in the data (good features) and this is why they are less than
x

The encoder is a
function that

maps from the
input data x into
the features z.

Autoencoders are an unsupervised approach for learning a low dimensional feature representation from unlabeled training data.
Autoencoders can reconstruct data, and can learn features to initialize a supervised model

ENCODER



X

Z

Autoencoders

Imagine that we have some input data x, and we want to learn from x
some features that we will call z. Usually, z has a lower dimension than x
(dimensionality reduction)

INPUT DATA

FEATURES

ENCODER

Typically the encoder architecture has changed with time: 
first -->  linear systems with the addition of the sigmoid
nonlinearity, 
then -->  deep fully connected architecture 
finally --> a relu activation with a CNN

z should consist of features that can capture meaningful factors of
variations in the data (good features) and this is why they are less than
x

The encoder is a
function that

maps from the
input data x into
the features z.

The training should be such that the features we obtain
can be used to reconstruct the original data. This is the
reason for the name “auto-encoding”, that means
encoding themselves. 

Training Encoder architecture

Autoencoders are an unsupervised approach for learning a low dimensional feature representation from unlabeled training data.
Autoencoders can reconstruct data, and can learn features to initialize a supervised model

Stanford course on convolutional neural network for computer vision (https://tinyurl.com/courselinkccomputervision)



X

Z

X*INPUT DATA

FEATURES

ENCODER

RECONSTRUCTED
INPUT DATA

DECODER

The decoder part The decoder is a second network that receives the features that were produced based on the
input and outputs something that has the same dimensionality of x, so something similar to x.

For the decoder, we are using the same
type of network architectures used in the

encoders, i.e. CNN for most of the time

encoder: 4-layer conv
decoder: 4-layer conv

Source: Examples from lecture series cs231_n from Stanford University,  
(https://tinyurl.com/courselinkccomputervision)



X

Z

X*INPUT DATA

FEATURES

ENCODER

RECONSTRUCTED
INPUT DATA

DECODER

Training We then train such features in such a way to be used to reconstruct the original data. No external labels
are used to train this network. Instead, we use a loss function which is similar to a L2 loss distance, that
acts at pixel scale, trying to make the pixels of the reconstructed image to be the same as the ones of the
input data. 

L2 LOSS FUNCTION

This loss function does not use labels

After training, we can throw away the decoder. 
It was used to produce our reconstruction and
provided the input to compute the loss function

Value: use a lot of untrained data to learn good

general feature representations. It can be used

also to initialize a supervised learning problem

when we don’t have enough labelled data.



Z

X*INPUT DATA

FEATURES

ENCODER

Training We then train such features in such a way to be used to reconstruct the original data. No external labels
are used to train this network. Instead, we use a loss function which is similar to a L2 loss distance, that
acts at pixel scale, trying to make the pixels of the reconstructed image to be the same as the ones of the
input data. 

The encoder can be used to produce a feature mapping with which
we can initialize a supervised model.
We can also connect the features to an additional classifier network
on top of the encoder, to provide a class label for a classification
problem.

Value: use a lot of untrained data to learn good

general feature representations. It can be used

also to initialize a supervised learning problem

when we don’t have enough labelled data.



Application of CNNs: Cloud classification

4





Is cloud mesoscale organization relevant? 



Meteorological
scales (1975)

A large number of
atmospheric

processes occur at
scales in between

the scale of meters
and the scale of

thousands of Km. 

With the term
mesoscale, we
refer to all the

states in between
the micro scale and

the macro scale.

Figure 1 from A Rational Subdivision of Scales for Atmospheric Processes.
Bulletin of the American Meteorological Society, 56(5), 527–530.

http://www.jstor.org/stable/26216020



Bony, S.,  Schulz, H.,  Vial, J., &  Stevens, B. (2020).  Sugar, gravel, fish and flowers: Dependence of mesoscale patterns of
trade-wind clouds on environmental conditions. Geophysical Research Letters,  47, e2019GL085988. 

Different cloud mesoscale patterns have different properties and radiative
responses, which matter for climate



and numerical models should represent such processes and their interactions  

mm 10m 100m 1 km 10 km 100 km 1000 km

cloud
microphysics

turbulence cumulus
 clouds

Cumulonimbus 
clouds

Mesoscale convective
systems

Extratropical cyclones

10000 km

Planetary waves

Are they good in that? 

DNS Large eddy simulations (LES) models

Cloud resolving models
Numerical weather prediction models (NWP)

NextGEMS climate models

98



OBS

Models resolving convection do not reproduce the same aggregation
we see in the observations at the mesoscale

Figure: Becker, T.,
Takasuka, D., and Bao, J.:
Characteristics of
precipitating convection and
moisture-convection
relationships in global km-
scale simulations, EGU
General Assembly 2024,
Vienna, Austria, 14–19 Apr
2024, EGU24-17683,
https://doi.org/10.5194/egus
phere-egu24-17683, 2024., 

paper in preparation “"On
the influence of moisture-
convection relationships on
precipitating convection in
global km-scale simulations”
from Takasuka, Bao and
Becker

ICON

IFS NICAM

from Becker et al., in prep,
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Does mesoscale convective aggregation matter? 

 it influences the mean state of the atmosphere by affecting the
distribution of convective heating.

is crucial for accurate forecasting in NWP and climate models

 is crucial in the dynamics of tropical convection. 

 contributes to the formation of large-scale weather
systems like mesoscale convective complexes



What forms of organization do we have in nature?
 Can we reproduce them?



not really, so we have a difficulty in representing these clouds in climate models.

What forms of organization do we have in nature?
 Can we reproduce them?



Copernicus Climate Change
ServiceClimate Indicators |
2022
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The Earth is warming...

 Global average near-surface temperature for centred running 60-month periods, relative to the average for the 1991–2020 reference period (left-hand axis) and as an increase
above the 1850–1900 level (right-hand axis), according to six datasets. The average temperature for 1991-2020 from ERA5 is 14.4°C. Data sources: ERA5 (C3S/ECMWF), JRA-55

(JMA), GISTEMPv4 (NASA), HadCRUT5 (Met Office Hadley Centre), NOAAGlobalTempv5 (NOAA) and Berkeley Earth. Credit: C3S/ECMWF. From
https://climate.copernicus.eu/climate-indicators/temperature



...and climate models struggle to predict how clouds will respond to climate change.

Differing predictions, between different climate models, for how
these clouds will respond to a warming climate account for most

of the variation in climate sensitivity between models (Bony &
Dufresne, 2005; Medeiros

et al., 2008; Vial et al., 2013; Webb et al., 2006) 

From Dufresne, J., and S. Bony, 2008: An Assessment of the Primary Sources of Spread of Global Warming Estimates
from Coupled Atmosphere–Ocean Models. J. Climate, 21, 5135–5144, https://doi.org/10.1175/2008JCLI2239.1. 

Assessed values of individual cloud feedbacks and the total cloud feedback based upon process evidence. For
individual cloud feedbacks, maximum likelihood values are shown by black diamonds and the widths of blue

rectangles, with 2 times the 1-sigma likelihood values shown by the width of the black uncertainty bars. For
the total cloud feedback, the mean value of the PDF is shown by a black diamond and the width of the

accompanying blue rectangle, with 2 times the PDF standard deviation shown by the width of the black uncertainty
bar. From Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., et al. (2020). An

assessment of Earth's climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58,
e2019RG000678. https://doi.org/10.1029/2019RG000678

https://doi.org/10.1175/2008JCLI2239.1
https://doi.org/10.1029/2019RG000678


Satellite instruments have observed clouds for several decades

We have a rich dataset that
can potentially contribute to

our understanding of
cloud dynamics and

feedbacks 

but these large datasets
have not yet been fully

employed, in part because
computing power has only
recently approached the

necessary scale.



Cloud classification effectively reduces the dimensionality of information
in satellite images, rendering them tractable to analysis.



Ways of learning

5



Supervised learning

Data (x,y) 

x is
data y is label

Golden
retriever

Goal 

Learn a function that can map x into y

Examples

Classification

CAT

Object detection

CAT, DOG, DOG, CAT

Image captioning

A dog is playing with
a ball on the floor

Image segmentation

grass, cat, sky

Source: Examples from lecture series cs231_n from Stanford University (https://www.youtube.com/redirect?
event=video_description&redir_token=QUFFLUhqbXhQMVMwcXQ3bGgwdE9FdVBQemJVNzRlb0lUQXxBQ3Jtc0ttbjAtWEtHUF9KUXhsYjM4SDNRQlhBeFM1NG1vMkE3YjhzQVN
sV1FXQlRQZk9WN0dra0NuWVRMS0pVdzJxS2FIemtxLS00b0xDenpzREJER2doTnN0dklJYjl5V3hVSWFuQVA0UWo2NWJhcTZLVmVZTQ&q=http%3A%2F%2Fcs231n.stanford

.edu%2Fslides%2F2017%2Fcs231n_2017_lecture13.pdf&v=5WoItGTWV54)

https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbXhQMVMwcXQ3bGgwdE9FdVBQemJVNzRlb0lUQXxBQ3Jtc0ttbjAtWEtHUF9KUXhsYjM4SDNRQlhBeFM1NG1vMkE3YjhzQVNsV1FXQlRQZk9WN0dra0NuWVRMS0pVdzJxS2FIemtxLS00b0xDenpzREJER2doTnN0dklJYjl5V3hVSWFuQVA0UWo2NWJhcTZLVmVZTQ&q=http%3A%2F%2Fcs231n.stanford.edu%2Fslides%2F2017%2Fcs231n_2017_lecture13.pdf&v=5WoItGTWV54


x

Z

x*

Unsupervised learning

Data

x is
data

y is label

Golden
retriever

Only data, no labels

Goal 

Learn underlying hidden structures in the data

Examples

Clustering PCA and dimensionality
reduction

Feature learning

input data reconstructed  data

Autoencoder

input data

features

reconstructed
input

Loss 
(distance x*,x)



Self-supervised learning

In a self-supervised approach we don’t have labels, but we ask

the model to learn that the augmentation combinations created

from our data are “similar”, since they are different “versions”

of the same image

Learning principle Contrastive learning: learn general features of

a dataset without labels by teaching which data points are similar

or different in a comparison among pairs

In this process, the unsupervised problem is transformed into a

supervised problem by auto-generating the labels. (pseudolabels

from the data itself)

To make use of the huge quantity of unlabeled data, it is crucial to

set the right learning objectives to get supervision from the data

itself.

cropping

flipping



Self-supervised methods design a learning task that does not rely on human annotations. 

 

 2 twins from each
crop, having 75% of
the crop area (96 x

96) 

network 
input

1) from one image, you take two different crops

3) there are many ways to operate the matching: contrastive learning, matching representations, cluster assignment

All in all, it is about learning invariance with respect to data augmentation and cropping.

2) you build two representations
of those crops and you try to
match them

Inspired from the tutorial on computer vision self-supervised approaches, contribution from Mathilde Caron (https://www.youtube.com/watch?v=MdD4UMshl1Q&t=13629s)



Summarizing

Supervised learning 

training neural networks on labeled data for a
specific task.

golden retriever

golden retriever

golden retriever

golden retriever

it is a golden
retriever

training test

find implicit patterns in the data without being
explicitly trained on labeled data. Unlike
supervised learning, it does not require annotations
and a feedback loop for training. For e.g. clustering.

Unsupervised learning

predict any unobserved or hidden part (or
property) of the input from any observed
or unhidden part of the input. It is also
known as predictive or pretext learning.

Self-supervised learning



6
Cloud classification approaches: 

an overview



Overview of cloud classification algorithms 

SUPERVISED METHODS UNSUPERVISED METHODS SELF-supervised METHODS

Stevens et al., 2019:
mesoscale patterns in trade

winds

Denby, 2019: 
Discovering the importance of
mesoscale cloud organization

through unsupervised
classification

Rasp et al., 2019:
crowdsourcing and deep

learning to explore mesoscale
organization of shallow

convection

Kurihana et al. 2022: 
Cloud classification with

unsupervised deep learning

Chatterjee et al., 2022:
Understanding Cloud Systems’

Structure and Organization Using
a Machine’s Self-Learning

Approach



Overview of cloud classification algorithms 

SUPERVISED METHODS
Stevens et al., 2019:

mesoscale patterns in trade
winds

Rasp et al., 2019:
crowdsourcing and deep

learning to explore mesoscale
organization of shallow

convection



4 modes of organization: sugar, flower, fish and gravel.1.
The majority (4 of 6) of the labellers agreed on one of these four
labels with a probability (p = .4) much larger than would be
expected by randomly assigning six (p = .052).

2.

Almost all of the images (more than 90%) exhibited features
sufficient for at least one person to say that a particular pattern
dominated the image.

3.

Human identified cloud patterns: first step

Twelve trained atmospheric scientists gathered to explore to what extent patterns of
mesoscale variability could be visually and subjectively identified in satellite imagery of

clouds (MODIS) in the winter trades of the North Atlantic.

 Differences in patterns are associated with differences in the
structure of the cloud field as also visualised by its radar

presentation, with Fish being most associated with deeper
clouds and precipitation.

Stevens et al., 2019, Rasp et al., 2020



Rasp et al., 2019

Human and machine identified cloud patterns: Rasp et al., 2019

They applied 2 pattern recognition tasks:
1) object detection (drawing boxes around images)
2) image segmentation (classification of every pixel of the image)

CAT, DOG, DOG, CAT grass, cat, sky

WHAT THEY DO:
On cloud labeling days at two institutes, 67 scientists
screened 10,000 satellite images on a crowd-sourcing

platform and classifed almost 50,000 mesoscale
cloud clusters. 

This dataset is then used as a training dataset
(labeled) for deep learning algorithms that automate
the pattern detection and create global climatologies

of the four patterns.



WHAT THEY DO:
On cloud labeling days at two institutes, 67 scientists

screened 10,000 satellite images on a crowd-sourcing
platform and classifed almost 50,000 mesoscale

cloud clusters. 

This dataset is then used as a training dataset
(labeled) for deep learning algorithms that automate
the pattern detection and create global climatologies

of the four patterns.

Rasp et al., 2019

Human and machine identified cloud patterns



Quantifying the agreement between classifications (Humans vs Machine)

Intersect over Union (IoU) score, also called the
Jaccard index. 

Given two sets, A and B it is defined as the ratio of
their intersection to their union,
 i.e., I = A\B divided by U = A U B.

IoU = 1: perfect overlap
IoU = 0: no overlap

Both algorithms show a large agreement with the human labels for a
random validation dataset. The fact that the scores are higher than the

mean inter-human IoU directly reflects the fact that the algorithms tend to
produce less noisy predictions. 

The primary reason for the low
mean IoU score are zero values,

which arise from some users
detecting a feature while others

did not.



sugar gravel fish flower

Limitations of human labeled approach

4 classes are not
enough to
classify the

observations we
collected

some
misclassification
occurred during
the campaign

they are sometimes associated with misclassifications

Stevens et al., 2020 

from
Acquistapace
et al., 2024, in

prep



Table from Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of organized shallow convection in the
downstream North Atlantic trades. Journal of Geophysical Research: Atmospheres, 126, e2021JD034575. Schulz et al., 2021: 

Limitations of human labeled approach 

Human label classes occur in
less than 50% of the cases 
(Schulz et al., 2021)

Subjective approach can really
capture a complete
representation of the cloud
organization? Or will it privilege
somehow what our eyes are
able to recognize?
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https://doi.org/10.1029/2021JD034575
https://doi.org/10.1029/2021JD034575


Overview of cloud classification algorithms 

UNSUPERVISED METHODS
Denby, 2019: 

Discovering the importance of
mesoscale cloud organization

through unsupervised
classification

Kurihana et al. 2022: 
Cloud classification with

unsupervised deep learning



Unsupervised methods (1)
Denby, 2019: first unsupervised neural network

model which autonomously discovers cloud
organization regimes in satellite images.

GOAL: construct a computational model
that can discover which structures exist
in a given image and group images
containing similar structures without
any label.

architecture: residual network,
ResNet-34

y = Fnn(x) = 𝑓N(...𝑓3(𝑓2(𝑓1(x)))).

The tiles of the triplet are sampled from
satellite imagery:

two contain very similar cloud
structures (same image, 50% overlap)
the third contains very different cloud
structure compared to the former two
(random location, different day)

The loss function encourages similar
embeddings from the anchor and the
neighbor and penalizes similar
embedding from the anchor and the
distant tile. It is based on L2 norm
distances.

m is the hyperparameter called margin,
regulating the distance between anchor
and distant tile. m set to 1.

 

Input images: 256 x 256 RGB
composites using the channels 1, 2, and
3 of GOES. 
Tiles size: 200 km (capturing any cloud
structure up to beta mesoscale.
Dataset: 

Four satellite images per day,
domain Tropical Atlantic, 
3 months of data period nov 2018
to Jan 2019 (Boreal winter)



Neural network without supervision
discovers different types of cloud
structures and groups images with
similar features together in the
embedding space.



Neural network without supervision
discovers different types of cloud
structures and groups images with
similar features together in the
embedding space.

This is a dendrogram, and displays the
outcome of a hierarchical clustering

based on a given metric 
(Ward metric here). 

 measures the intra-cluster variance
length of the vertical vertices
connecting each merge indicates the
similarity between clusters 

(larger intra-cluster variance meaning
larger variance in distance between points
in the embedding space)



A, B, G, and H contain smaller cloud
structures as compared to C–F 



another feature used by the model
is the presence or absence of a

light-gray shading (which is likely
high-level dust being swept from
the coast of Africa) seen in G and

H.

A, B, G, and H contain smaller cloud
structures as compared to C–F 



D–F contain more cellular
structures as compared to

the broken larger clouds in I–
L.

another feature used by the model
is the presence or absence of a

light-gray shading (which is likely
high-level dust being swept from
the coast of Africa) seen in G and

H.

A, B, G, and H contain smaller cloud
structures as compared to C–F 



D–F contain more cellular
structures as compared to

the broken larger clouds in I–
L.

another feature used by the model
is the presence or absence of a

light-gray shading (which is likely
high-level dust being swept from
the coast of Africa) seen in G and

H.

A, B, G, and H contain smaller cloud
structures as compared to C–F 

 I–LA and B are distinguished from G
and H by the latter containing a more

regular cellular pattern of clouds
where clouds in A and B are more

scattered. 



Cloud impact on the Earth's radiation budget: different clusters have different cloud radiative properties in outgoing short-wave and long-
wave radiation

Denby, 2019

tile nearest to
the mean

mean radiative properties (and so
climatic impact) are clearly

distinct.with increasing cloud cover
there is in general a decreasing
amount of long-wave emissions

to space and an increase of
short-wave emissions.

short wave

lo
ng

 w
av

e



The clusters of cloud types
identified by the neural network

occupy different parts of the Iorg
- DMB space, and the cluster

means are clearly separated,
the neural network has learnt

distinct cloud regimes.

Denby, 2019

Iorg quantifies whether
the spatial distribution of clouds is regular
(Iorg < 0.5), random (Iorg = 0.5), or
organized (Iorg>0.5),

DMB quantifies the
spatial form of clouds by
measuring the fractal dimension,
expected to be between that of a
line (DMB = 1) and a plane (DMB =
2), by counting the number of
successively smaller boxes that
cover the cloud mask.

 Iorg - DMB space



Unsupervised methods (2)

Kiruhana et al., 2022: learning cloud features directly from radiances produced by MODIS

Deep convolutional
autoencoder, that in
learning optimizes the
function L 

image
map to

representation

The loss combines four
metrics: L1, L2, Sobel filter
and multiscale similarity
index (MSSIM)

In encoder, width and stride
halved at each block, depth
doubled.

In decoder, tranformations
reversed.

Architecture



Unsupervised methods (2)

Kiruhana et al., 2022: learning cloud features directly from radiances produced by MODIS

Deep convolutional
autoencoder, that in
learning optimizes the
function L 

image
map to

representation

The loss combines four
metrics: L1, L2, Sobel filter
and multiscale similarity
index (MSSIM)

Convolutional layer
included to preserve
the structure of the
input image.

filter kernel
operation

extracts local
features and parses
the activation layer.

residual connection
every two convolutional

layers to improve
network performance

In encoder, width and stride
halved at each block, depth
doubled.

In decoder, tranformations
reversed.

leaky RElu activated
with residual
connections

Architecture



Model framework

M02 and M35
are the MOD02 and
MOD35 satellite data

products used as
inputs



Model framework

M02 and M35
are the MOD02 and
MOD35 satellite data

products used as
inputs

The encoder decoder
identifies the

dimensionality
reduced features....

...which are then fed
into the clustering to

obtain the cloud
classification.



Model framework

The encoder decoder
identifies the

dimensionality
reduced features....

...which are then fed
into the clustering to

obtain the cloud
classification.

They use hierarchical
agglomerative clustering (HAC)

to merge data points by
minimizing cluster variance

distance between cluster A and B is
the squared distance between

centroids of the merged clusters CA
and CB weighted by the sum of the

number of patches in A and B.

M02 and M35
are the MOD02 and
MOD35 satellite data

products used as
inputs



Results

encoder - decoder clustering patch mean values of modis channel clustering
Visible image with

cluster 0 (violet) and
 2 (blue) 

white indicates
no data or invalid data;
black indicates patches

with <30% cloud
pixels.



Results

Cluster 2 is stratocumulus
and cluster 0 is cirrus

clouds

encoder - decoder clustering patch mean values of modis channel clustering
Visible image with

cluster 0 (violet) and
 2 (blue) 

white indicates
no data or invalid data;
black indicates patches

with <30% cloud
pixels.

clustering via
autoencoder produces

classes that are spatially
more

cohesive and that better
capture important

physical
transitions



Results

Cluster 2 is stratocumulus
and cluster 0 is cirrus

clouds

encoder - decoder clustering patch mean values of modis channel clustering
Visible image with

cluster 0 (violet) and
 2 (blue) 

white indicates
no data or invalid data;
black indicates patches

with <30% cloud
pixels.

clustering via
autoencoder produces

classes that are spatially
more

cohesive and that better
capture important

physical
transitions

T-sne representation of autoencoder clusters
shows cohesive and distinct patch clusters 



Side thoughts on crop image sizes, channels and domain sizes

Single or multiple inputs?

Visible channels or 

multi-frequency radiances ?

Only around 50% of the images are classified,

what do we do with the rest?

supervised

UNsupervised

Denby, 2019:  256 x 256 pixels corresponding to 200 km size, 
RGB composite with visible channels

Stevens, 2019:  around 1000x2000 km, visible images from
MODerate-resolution Imaging Spectroradiometer (MODIS)
Rasp, 2019: Terra and Aqua MODIS visible images from NASA
Worldview subregions a larger image (larger than Stevens)

Kiruhana, 2022:  128 x 128 km, 6 selected bands radiances and
MODIS products



Are these crops large enough to

capture all mesoscale pattern

organizations? 

Side thoughts on crop image sizes, channels and domain sizes

Denby, 2019:  256 x 256 pixels corresponding to 200 km size, 
RGB composite with visible channels

Stevens, 2019:  around 1000x2000 km, visible images from
MODerate-resolution Imaging Spectroradiometer (MODIS)
Rasp, 2019: Terra and Aqua MODIS visible images from NASA
Worldview subregions a larger image (larger than Stevens)

Kiruhana, 2022:  128 x 128 km, 6 selected bands radiances and
MODIS products

gravel (20-
100 km)

fish (200-
2000 km)

flower (200-
200 km)

sugar 

Single or multiple inputs?

Visible channels or 

multi-frequency radiances ?

Only around 50% of the images are classified,

what do we do with the rest?

supervised

UNsupervised

and L2 distances for measuring differences among images? 



Overview of cloud classification algorithms 

SELF supervised methods
Chatterjee et al., 2022:

Understanding Cloud Systems’
Structure and Organization Using

a Machine’s Self-Learning
Approach



We leave the tropics and we move to Europe

Instead of visible channel
combinations or radiances, we use a

validated product: 

Cloud optical thickness

Four images are
randomly cropped

out of 128 x128 pixels
at every time

 step



ResNet 50
(He et al. 2015)

goal: finding main features

Multilayer- perceptron

goal: reducing number of
features

goal: identify class
(label and centroid)

goal: optimization of
weights and
calculation of

parameter update



Through the upper
branch, the network assigns a pseudolabel qs corresponding

to a centroid Cs to the feature vector Z obtained from the image xit2.



In the lower branch we also obtain a feature array z, which is compared to the
one from the other branch by inserting it in the cost function together with the

output (Cs, qs) of the upper branch



When the feature vectors of the two branches capture similar information about the
original image, the loss becomes lower and higher when they diverge. That is how the

network branches are encouraged to focus on the image characteristics, which
progressively makes the feature vectors similar.



Training and classification

The seven centroids in show
distinct COD patterns

Centroid
2 is associated mainly with

clear-sky conditions

Centroid 3:
 optically thin clouds

Centroids with 
extended cloud fields with
mean cloud fraction higher

than 94%



Optimum classification

distinct cloud patterns occupy distant areas

class 2 relates to clear-
sky conditions and is

located
clearly on the edge of

the 2D space

on the opposite edge we
find the classes

with the strongest
convective cloudiness



Physical properties of clouds
Classes 3 and 7 correspond to

relatively low-level clouds
(orangeshaded) with relatively small
cloud optical depth values, with their

mean values displaying
cloud-top altitude below 600 hPa

(around 3000 m).

Classes 4, 5, and 6 (blue-shaded dots in Fig. 7) all describe
overcast situations with cloud fractions of more than 94%.

For these classes, average COD values are larger than 10, and
they span a broad region of CTP values above 800 hPa



We can study the temporal
development of specific

cloud regimes and exploit the 5-
min temporal resolution of
the dataset to observe the

transformation of cloud systems
with time at a higher resolution.

sometimes a mixed regime appears with the
alteration between

two deep convections (classes 5 and 6)

When deep convection decreases, then low
level cloud and then clear sky appear.

In the morning you can also see the
deepening of the atmospheric boundary
layer, with lower clouds substituted by

deeper convective clouds.



that’s it
for this
course!


